SOA - 大气化学与全球气候变化 - Page 8

Ozone and SOA formation from ethylene

组内消息 2015-09-11

High light
液态海盐颗粒可以减少乙烯光氧化生成的臭氧
小分子乙烯降解产物可以在颗粒水中生成二次有机气溶胶

10874_2015_9317_Fig7_HTML.gif

The formation of ozone and secondary organic aerosol (SOA) from ethylene-NO x -NaCl(aerosol) irradiations was studied under various relative humidity (RH) conditions in an indoor smog chamber. In the absence of NaCl seed aerosols, SOA was hardly formed and peak O3 concentrations decreased linearly with increasing RH in ethylene irradiations. For the irradiations with NaCl seed aerosols, when RH <48% (efflorescence relative humidity of NaCl), NaCl existed as solid phase and had little effect on peak O3 concentrations. The infrared spectra from sampled particles showed that SOA was rarely formed on solid NaCl particles. However, when NaCl was in the aqueous phase as RH ≥ 48%, the peak O3 concentration was sharply reduced by over 20 % as compared to experiments without NaCl aerosol, and the absorption of NaNO3 in aerosols was coincidently increased with RH. Model results indicated that the heterogeneous reaction of N2O5 with aqueous NaCl aerosols was the main cause for the sharp decrease of O3. Besides, the absorptions from C-H, C = O, ONO2 and COO groups all greatly increased with RH. Our results show that SOA from ethylene-NOx irradiations was mainly formed through aqueous reactions. The yields of SOA from ethylene were measured to be 1.5 and 2.3% at RH of 65 and 84%, respectively.

Jia, L.; Xu, Y. Ozone and secondary organic aerosol formation from Ethylene-NOx-NaCl irradiations under different relative humidity conditions. J. Atmos. Chem. 2016, 73(1):81-100; doi:10.​1007/​s10874-015-9317-1
full text

Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene

组内消息 2013-11-07

SOA samples with heating were heated at 110°C for 15 min
uast_a_847269_o_f0008g.jpg

The formation of ozone and secondary organic aerosol (SOA) from benzene–NO x and ethylbenzene–NOx irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. In benzene and ethylbenzene irradiations, the intensity of the bands of O‒H, C=O, C‒O, and C‒OH from SOA samples all greatly increased with increasing RH. The major substances in SOA were determined to be carboxylic acids and glyoxal hydrates. It was also found that SOA contained aromatic products, and NO2- and ONO2-containing products. The results show that the increase in RH can greatly reduce the maximum O3 by the transfer of NO2- and ONO2-containing products into the particle phase. During the process of evaporation, the lost substances from the collected SOA have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene, some of glyoxal hydrates were left to form C‒O‒C- and C˭O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favored cross reactions with ethylglyoxal during evaporation. Only a few species in SOA were released into the gas phase during evaporation while a large part of SOA remained, which is mainly composed of carboxylic acid. It is concluded that the aqueous radical reactions and the hydration from glyoxal can be enhanced under high RH conditions, which can irreversibly enhance the formation of SOA from both benzene and ethylbenzene. 全文下载

Jia L, Xu Y F. Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene. Aerosol Science and Technology, 2014, 48(1):1-12.