MS - 大气化学与全球气候变化 - Page 2

New publication in STE:The functional group signatures of aerosol from α-pinene

组内消息 2020-06-01

The role of functional groups in the understanding of secondary organic aerosol formation mechanism from α-pinene

1-s2.0-S0048969720333519-ga1_lrg.jpg

Highlights
•The SOA is characterized by O–H groups in the OH channel and C=O groups in the O3 channel

•The nO−H/nC=O ratio is a good parameter in revealing the difference of SOA between the O3 and OH oxidation channels

•The SOA from OH channel is mainly formed by autoxidation of RO2 radicals

•Different structures of RO2 radicals are responsible for the difference functional group signatures of SOA

Full text:https://doi.org/10.1016/j.scitotenv.2020.139831

Collaborative publication:Water-soluble organic aerosol in summer in Beijing

组内消息 2020-05-05

Molecular composition and sources of water-soluble organic aerosol in summer in Beijing

Molecular composition and sources of water-soluble organic aerosol in summer in Beijing.jpg

Highlights
• Water-soluble organic aerosol was the major fraction of OA in summer in Beijing.

• SOA from regional and photochemical processing contributed dominantly to WSOA.

• A high diversity of CHO and CHOS molecular compounds in WSOA was observed.

• Formation of more organosulfates during polluted days than clean days in summer.

Qiu, Y., Xu, W., Jia, L., He, Y., Fu, P., Zhang, Q., Xie, Q., Hou, S., Xie, C., Xu, Y., Wang, Z., Worsnop, D.R., Sun, Y., 2020. Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere 255, 126850.

Collaborative publication: Effect of RH on SOA from cyclohexene

组内消息 2019-05-19

Influence of relative humidity on cyclohexene SOA formation from OH photooxidation
RH on SOA from cyclohexene.jpg

Highlights
• Combined effects of OH and RH on cyclohexene SOA formation were studied.

• The formation of oligomers at high RH was responsible for the increase of the SOA yield.

• High RH increases the OH uptake coefficient of SOA, and promotes SOA aging.

• Oligomers formation mechanism from cyclohexene photooxidation at high RH was proposed.

Liu, S., Tsona, N.T., Zhang, Q., Jia, L., Xu, Y., Du, L., 2019. Influence of relative humidity on cyclohexene SOA formation from OH photooxidation. Chemosphere 231, 478–486. https://doi.org/10.1016/j.chemosphere.2019.05.131

Full text:https://doi.org/10.1016/j.chemosphere.2019.05.131