贾龙 - 徐永福课题组

贾龙

课题成员 2011-07-26

贾龙 (Jia Long)
中国科学院大气物理研究所,大气边界层物理和大气化学国家重点实验室,副研究员,硕士生导师,大气物理研究所青年科学家实验室成员
E-mail:jialong(at)mail.iap.ac.cn
Researchgate:https://www.researchgate.net/profile/Long-Jia-6
ORCID:https://orcid.org/0000-0002-9050-723X

研究兴趣:
 通过原位质谱和光谱技术解析二次有机气溶胶(SOA)的分子组成和形成机制
 基于烟雾箱实验和精细化二次有机气溶胶核壳动力学模式(CSVA),研究气溶胶成核、气-粒传质、颗粒相反应、吸湿增长和云雾微物理等过程

教育背景:
2000.9~2004.7 北京科技大学,学士
2004.9~2007.7 北京师范大学,硕士
2007.9~2010.7 中国科学院大气物理研究所,博士

项目信息:
 北京市自然科学基金,面上项目,环境因子对半挥发性有机物气-粒分配系数的影响规律,2021-2023,负责
 国家自然科学基金,面上项目,水溶性有机气溶胶成分解析及关键形成机制的实验室研究,2019-2022,负责
 中国科学院功能开发项目,气溶胶原位电离源系统的开发,2020-2022,负责
 国家自然科学基金,青年项目,氯化钠气溶胶对单环芳香烃光氧化的影响,2012-2014,负责
 中国科学院战略性先导科技专项,“灰霾 追因 与控制”(B类),“灰霾追因模拟”之子课题:典型植物排放挥发性有机物在近实际大气条件下形成二次细粒子的研究,2012-2017,负责
 中国科学院知识创新工程方向性项目,“区域大气氧化剂、霾的形成机制与复合效应”之子课题:不同前体物配比和反应条件下O3的生成和变化规律研究,2009-2011,负责

专利信息:
 实用新型专利:气态和颗粒态有机物分离机构及电离装置 (202221027247.9),贾龙,徐永福,已授权
 发明专利:气态和颗粒态有机物电离系统及电离方法(202210469809.3)贾龙,徐永福,审查中

软件著作权:
高分辨质谱数据处理系统;登记号:2022SR1406111;贾龙
主要功能:(1)对质谱数据去卷积,确定物质的精确分子量;(2)复杂样品背景的扣除;(3)解析物质的分子式;(4)搜库及通过二级质谱确定分子结构;(5)通过虚拟反应器确定SOA低聚物分子的前体物和生成机理;(6)元素统计分析
大气光化学反应箱模式系统;登记号:2020SR1105694;贾龙
该模式以MCM为核心化学反应机制,包含了源排放、混合层稀释、混合层顶输入、干沉降和化学反应等模块,可以精细化模拟和诊断臭氧污染问题

论文信息:
Jia, L., Xu, Y., Duan, M., 2023. Explosive formation of secondary organic aerosol due to aerosol-fog interactions. Sci. Total Environ. 866, 161338. https://doi.org/10.1016/j.scitotenv.2022.161338
 Zhang, H., Xu, Y., Jia, L., 2023. Hydroxymethanesulfonate formation as a significant pathway of transformation of SO2. Atmos. Environ. 294, 119474. https://doi.org/10.1016/j.atmosenv.2022.119474
 Yu, S., Jia, L.*, Xu, Y., Pan, Y., 2022. Molecular composition of secondary organic aerosol from styrene under different NO and humidity conditions. Atmos. Res. 266, 105950. https://doi.org/10.1016/j.atmosres.2021.105950
 Yu, S., Jia, L.*, Xu, Y., Pan, Y., 2022. Formation of extremely low-volatility organic compounds from styrene ozonolysis: Implication for nucleation. Chemosphere 305, 135459. https://doi.org/10.1016/j.chemosphere.2022.135459
 Yu, S., Jia, L.*, Xu, Y., Zhang, H., Zhang, Q., Pan, Y., 2022. Wall losses of oxygenated volatile organic compounds from oxidation of toluene: Effects of chamber volume and relative humidity. J. Environ. Sci. 114, 475–484. https://doi.org/10.1016/j.jes.2021.09.026
Jia, L., Xu, Y., 2021. A core-shell box model for simulating viscosity dependent secondary organic aerosol (CSVA) and its application. Sci. Total Environ. 789, 147954. https://doi.org/10.1016/j.scitotenv.2021.147954
 Zhang, H., Xu, Y., Jia, L., 2021. A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water. Atmos. Environ. 245, 118019. https://doi.org/10.1016/j.atmosenv.2020.118019
 Zhang, H., Xu, Y., Jia, L., Xu, M., 2021. Smog Chamber Study on the Ozone Formation Potential of Acetaldehyde. Adv. Atmos. Sci. 38, 1238–1251. https://doi.org/10.1007/s00376-021-0407-5
Jia, L., Xu, Y., 2020. The role of functional groups in the understanding of secondary organic aerosol formation mechanism from α-pinene. Sci. Total Environ. 738, 139831. https://doi.org/10.1016/j.scitotenv.2020.139831
 Qiu, Y., Xu, W., Jia, L., He, Y., Fu, P., Zhang, Q., Xie, Q., Hou, S., Xie, C., Xu, Y., Wang, Z., Worsnop, D.R., Sun, Y., 2020. Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere 255, 126850. https://doi.org/10.1016/j.chemosphere.2020.126850
 Jiang, X., Tsona, N.T., Jia, L., Liu, S., Zhang, H., Xu, Y., Du, L., 2019. Secondary organic aerosol formation from photooxidation of furan: Effects of NOx and humidity. Atmos. Chem. Phys. 19, 13591–13609. https://doi.org/10.5194/acp-19-13591-2019
 Liu, S., Tsona, N.T., Zhang, Q., Jia, L., Xu, Y., Du, L., 2019. Influence of relative humidity on cyclohexene SOA formation from OH photooxidation. Chemosphere 231, 478–486. https://doi.org/10.1016/j.chemosphere.2019.05.131
 Luo, H., Jia, L.*, Wan, Q., An, T., Wang, Y., 2019. Role of liquid water in the formation of O3 and SOA particles from 1,2,3-trimethylbenzene. Atmos. Environ. 217, 116955. https://doi.org/10.1016/j.atmosenv.2019.116955
 Zhang, Q., Xu, Y., Jia, L., 2019. Secondary organic aerosol formation from OH-initiated oxidation of m-xylene: Effects of relative humidity on yield and chemical composition. Atmos. Chem. Phys. 19, 15007–15021. https://doi.org/10.5194/acp-19-15007-2019
Jia, L., Xu, Y., 2018. Different roles of water in secondary organic aerosol formation from toluene and isoprene. Atmos. Chem. Phys. 18, 8137–8154. https://doi.org/10.5194/acp-18-8137-2018
 Xu, Y., Jia, L., 2018. Laboratory Simulation Studies of the Formation of Secondary Organic Aerosols in the Atmosphere(实验室模拟研究大气二次有机气溶胶的形成). Chinese J. Atmos. Sci. 42, 767–785. https://doi.org/10.3878/j.issn.1006-9895.1805.17251
 Ge, S., Xu, Y., Jia, L., 2017. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber. Atmos. Environ. 170, 205–215. https://doi.org/10.1016/j.atmosenv.2017.09.036
 Ge, S., Xu, Y., Jia, L., 2017. Secondary organic aerosol formation from propylene irradiations in a chamber study. Atmos. Environ. 157, 146–155. https://doi.org/10.1016/j.atmosenv.2017.03.019
 Ge, S., Xu, Y., Jia, L., 2017. Secondary organic aerosol formation from ethylene ozonolysis in the presence of sodium chloride. J. Aerosol Sci. 106, 120–131. https://doi.org/10.1016/j.jaerosci.2017.01.009
 Liu, S., Jia, L., Xu, Y., Tsona, N.T., Ge, S., Du, L., 2017. Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition. Atmos. Chem. Phys. 17, 13329–13343. https://doi.org/10.5194/acp-17-13329-2017
 Ge, S., Xu, Y., Jia, L., 2016. Secondary organic aerosol formation from ethyne in the presence of NaCl in a smog chamber. Environ. Chem. 13, 699–710. https://doi.org/10.1071/EN15155
Jia, L., Xu, Y., 2016. Ozone and secondary organic aerosol formation from Ethylene-NOx-NaCl irradiations under different relative humidity conditions. J. Atmos. Chem. 73, 81–100. https://doi.org/10.1007/s10874-015-9317-1
 Wang, Y., Luo, H., Jia, L.*, Ge, S., 2016. Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations. Atmos. Environ. 140, 386–394. https://doi.org/10.1016/j.atmosenv.2016.06.022
 Wang, W.G., Li, K., Zhou, L., Ge, M.F., Hou, S.Q., Tong, S.R., Mu, Y.J., Jia, L., 2015. Evaluation and application of dual-reactor chamber for studying atmospheric oxidation processes and mechanisms. Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. 31, 1251–1259. https://doi.org/10.3866/PKU.WHXB201504161
 Han, L., Chen, Y., Jia, L., Cheng, S., Xu, Y., Ning, H., Zhang, P., 2014. Heterogeneous reactions of NO2 on the surface of MgO particles (NO2在MgO颗粒物表面的非均相反应). Sci. Sin. Chim. 44, 2004–2012. https://doi.org/10.1360/N032013-00054
Jia, L., Xu, Y.F., 2014. Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation. Huanjing Kexue/Environmental Sci. 35, 495–503.
Jia, L., Xu, Y., 2014. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci. Technol. 48, 1–12. https://doi.org/10.1080/02786826.2013.847269
 Huang, L.H., Mo, C.R., Xu, Y.F., Jia, L., 2012. Smog chamber simulation of ozone formation from atmospheric photooxidation of propane. Huanjing Kexue/Environmental Sci. 33, 2551–2557.
Jia, L., Xu, Y., Shi, Y., 2012. Investigation of the ozone formation potential for ethanol using a smog chamber. Chinese Sci. Bull. 57, 4472–4481. https://doi.org/10.1007/s11434-012-5375-9
 Shi, Y., Xu, Y., Jia, L., 2012. Development and Application of Atmospheric Chemical Mechanisms. Clim. Environ. Res. 17, 112–124. https://doi.org/10.3878/j.issn.1006-958
 Hu, G., Xu, Y., Jia, L., 2011. Smog chamber simulation of atmospheric photochemical reactions of propene and NOx. Acta Chim. Sin. 69, 1593–1600.
 Hu, G., Xu, Y., Jia, L., 2011. Effects of relative humidity on the characterization of a photochemical smog chamber. J. Environ. Sci. 23, 2013–2018. https://doi.org/10.1016/S1001-0742(10)60665-1
Jia, L., Xu, Y.F., Shi, Y.Z., 2011. Characterization of photochemical smog chamber and initial experiments. Huanjing Kexue/Environmental Sci. 32, 351–361.
Jia, L., Xu, Y., 2011. Characterization of condensed phase nitric acid particles formed in the gas phase. J. Environ. Sci. 23, 412–418. https://doi.org/10.1016/S1001-0742(10)60414-7
 Shi, Y., Xu, Y., Jia, L., 2011. Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295-351K. Int. J. Chem. Kinet. 43, 238–246. https://doi.org/10.1002/kin.20553
Jia, L., Xu, Y., 2010. Formation of Secondary Organic Aerosol from the Styrene-NOx Irradiation. Acta Chim. Sin. 68, 2429–2435.
Jia, L., Xu, Y.F., Ge, M.F., Du, L., Zhuang, G.S., 2009. Smog chamber studies of ozone formation potentials for isopentane. Chinese Sci. Bull. 54, 4624–4632. https://doi.org/10.1007/s11434-009-0482-y
 Du, L., Xu, Y.F., Ge, M.F., Jia, L., Yao, L., 2007. Experimental investigation of incremental reactivity of di-tert-butyl peroxide. Chinese Sci. Bull. 52, 1629–1634. https://doi.org/10.1007/s11434-007-0243-8
 Du, L., Xu, Y., Ge, M., Jia, L., 2007. Rate constant for the reaction of ozone with diethyl sulfide. Atmos. Environ. 41, 7434–7439. https://doi.org/10.1016/j.atmosenv.2007.05.041
 Du, L., Xu, Y., Ge, M., Jia, L., Yao, L., Wang, W., 2007. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone. Chem. Phys. Lett. 436, 36–40. https://doi.org/10.1016/j.cplett.2007.01.025
 Du, L., Xu, Y.F., Ge, M.F., Jia, L., Wang, G.C., Wang, D.X., 2006. Determination of rate constants for ozone reactions with acetylene under atmospheric conditions. Acta Chim. Sin. 64, 2133–2137.
Jia, L., Ge, M.F., Xu, Y.F., Du, L., Zhuang, G.S., Wang, D.X., 2006. Advances in atmospheric ozone chemistry. Prog. Chem. 18, 1565–1574.
JIA, L., XU, Y., GE, M., DU, L., WANG, G., ZHUANG, G., 2006. Kinetic Study of the Gas-phase Ozonolysis of Propylene. Acta Physico-Chimica Sin. 22, 1260–1266. https://doi.org/10.1016/S1872-1508(06)60060-0
Jia, L., Ge, M., Zhuang, G., Yao, L., Wang, D., 2006. Advances in tropospheric night-time chemistry. Prog. Chem. 18, 1034–1040.
 Sun, Y.L., Zhuang, G.S., Wang, Z.F., Wang, Y., Zhang, W.J., Tang, a. H., Zhao, X.J., Jia, L., 2006. Regional characteristics of spring Asian dust and its impact on aerosol chemistry over northern China. Atmos. Chem. Phys. Discuss. 6, 12825–12864. https://doi.org/10.5194/acpd-6-12825-2006
 Xu, Y., Jia, L., Ge, M., Du, L., Wang, G., Wang, D., 2006. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Chinese Sci. Bull. 51. https://doi.org/10.1007/s11434-006-2180-3
Jia, L., Ge, M., Zhuang, G., Sun, Z., Wang, D., 2005. Advances in the study of tropospheric OH and HO2. Chem. Bull. / Huaxue Tongbao 68, 735–744. https://doi.org/10.3969/j.issn.0441-3776.2005.10.003

Tags: 博士

Related Posts: