组内消息
2024-11-15

异戊二烯是全球排放量最大的非甲烷挥发性有机物,在大气中具有强反应活性,是全球尺度二次有机气溶胶(SOA)最主要的前体物。氨气(NH3)是大气中含量最丰富的碱性气体,也是大气细颗粒物(PM2.5)中无机盐的主要前体物质。中国是氨气排放的热点区域之一,我国正计划未来削减氨排放,以降低大气PM2.5污染。但是,目前对于异戊二烯和氨在大气转化中的相互作用缺少基本了解。
课题组基于自主研发的气体-气溶胶原位电离技术(GAIS)和轨道阱质谱(Orbitrap-MS),研究了NH3在异戊二烯臭氧化形成SOA中的化学机理。发现NH3可以与异戊二烯臭氧化产物-稳态克氏中间体自由基(SCIs)反应生成一种全新的有机胺分子(C4H9O2N),NH3-SCIs反应通道会显著抑制SCIs的低聚反应,从而极大降低异戊二烯的SOA产率。同时,新生成的有机胺分子还会进一步与有机酸反应生成更多含氮有机物。该研究的重要意义在于:(1)提供了NH3与SCIs反应生成有机胺的直接证据,发现了大气中还原态有机氮生成的新通道;(2)发现氨气可以抑制异戊二烯的SOA产率。这意味着氨气在生物源SOA中的作用比当前的认识更为复杂,有必要对氨减排的潜在环境效应进行深入评估。

论文第一作者为李晓颖博士生,通讯作者贾龙研究员,合作者包括徐永福研究员和潘月鹏研究员。
Li, X.Y., Jia, L.*, Xu, Y.F., Pan, Y.P., 2024. A novel reaction between ammonia and Criegee intermediates can form amines and suppress oligomers from isoprene, Sci. Total Environ., 956, 177389, https://doi.org/10.1016/j.scitotenv.2024.177389
组内消息
2024-09-29

以硫酸铵等无机盐为代表的二次无机气溶胶(SIA)和二次有机气溶胶(SOA)是大气细颗粒物PM2.5的主要组成。由于SOA的成分极其复杂,因而过去的研究往往集中于SOA的生成和演化,很少关注SIA与SOA之间的相互作用。硫酸铵与SOA相互作用可能会改变气溶胶的毒性和光学特性,因此,忽略SIA与SOA之间的交叉反应,会限制我们对PM2.5理化特性的全面了解。
课题组利用实验室模拟和高分辨轨道阱质谱技术,发现烯烃降解过程中克氏中间体自由基之间存在普遍的交叉反应过程,并最新发现硫酸铵与SOA之间也存在着显著的交叉反应。研究团队分析了在不同环境条件下,硫酸铵与苯乙烯氧化产生的SOA之间交叉反应的分子组成,结果表明,铵盐主要通过颗粒相反应生成含氮有机物,而硫酸盐则主要参与形成有机硫酸酯。此外,硫酸铵的存在显著改变了苯乙烯克氏中间体生成低聚物的反应路径。这项研究不仅加深了我们对SOA形成机制的认识,突显了SIA与SOA分子间相互作用的重要性。硫酸铵与SOA相互作用会生成含氮和含硫有机物这一发现,对于揭示城市大气中PM2.5的毒性和光学特性具有重要的科学意义。
上述研究成果近期发表于期刊《Science of the Total Environment》,论文第一作者为于姗杉博士,通讯作者贾龙研究员,合作者包括徐永福研究员和潘月鹏研究员。
Yu, S.S., Jia, L.*, Xu, Y.F., Pan, Y.P., 2024. Molecular interaction between ammonium sulfate and secondary organic aerosol from styrene. Sci. Total Environ., 954,176414, https://doi.org/10.1016/j.scitotenv.2024.176414
组内消息
2023-01-20
在我国秋冬季节,雾霾事件时有发生。二次有机气溶胶(SOA)对雾霾有重要贡献,然而SOA与雾(或云)之间的基本相互作用还知之甚少,主要原因包括:(1)与无机盐不同,SOA主要由半挥发或中等挥发的有机气体通过气-粒转化形成,这意味着SOA的吸湿性(或活化为云雾滴的能力)不仅取决于颗粒态有机分子,同时还受SOA气态前体物的影响;(2)SOA组成和形成机理的复杂性,SOA由成千上万种有机分子组成,其来源不仅包括各种气相反应,而且还包含了大量颗粒相反应;(3)外场观测中通常采用热力学模型(例如,ISORROPIA或E-AIM)估算颗粒水含量,但其往往忽视了有机气溶胶对颗粒水的贡献;(4)要揭示SOA-雾相互作用,还需要精细化的气溶胶动力学模式与云雾微物理过程进行耦合,而在线耦合数千反应和数百个物种的大气化学动力学过程与云雾的微物理过程是一项挑战性任务。

中国科学院大气物理研究所贾龙副研究员及其合作者(徐永福和段民征研究员)通过高分辨质谱技术和精细化的气溶胶动力学模式(CSVA),在深入解析甲苯气态和颗粒态分子的基础上,从云雾微物理角度解析了SOA与云雾之间的相互作用,并首次发现气溶胶-雾相互作用是导致的SOA爆发性增长的关键机制。即,霾(haze)与雾(fog)紧密交织在一起,一方面,水溶性气态有机物的存在会降低SOA活化为云雾滴的临界过饱和比,导致SOA在湿度接近或低于100%时即可活化为云雾滴;同时,云雾的生成进一步促进水溶性气态有机物的气-粒转化,从而导致了SOA的爆发式增长。还进一步分析了温度和相对湿度在SOA生成中的协同作用,发现低温可以显著放大有机气体对SOA爆发式增长和云凝结核活化的作用。上述结果表明云雾微物理过程是水溶性气态有机物快速转化为二次有机气溶胶的主要原因。
Jia, L., Xu, Y., Duan, M., 2023. Explosive formation of secondary organic aerosol due to aerosol-fog interactions. Sci. Total Environ. 866, 161338. https://doi.org/10.1016/j.scitotenv.2022.161338
- 1
- 2
- 3
- 4
- NEXT »